GDC-0834 is a potent and selective inhibitor of Bruton's tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. GDC-0834 was shown to be a potent reversible inhibitor of six known Aldehyde oxidase (AO) substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834. N-(3-(6-((4-(1,4-二甲基-3-氧代哌嗪-2-基)苯基)氨基)-4-甲基-5-氧代-4,5-二氢吡嗪-2-基)-2-甲基苯基)-4,5,6,7-四氢苯并[b]噻吩-2-甲酰胺
GDC-0834 is a potent and selective inhibitor of Bruton's tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. GDC-0834 was shown to be a potent reversible inhibitor of six known Aldehyde oxidase (AO) substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834.
GDC-0834 is a potent and selective inhibitor of Bruton's tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. GDC-0834 was shown to be a potent reversible inhibitor of six known Aldehyde oxidase (AO) substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834.
安全信息
Storage condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).